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Abstract

What makes many decisions in sports difficult is that they involve a trade-off 
between risk and reward. Actions such as taking a three-point shot, carrying a 
puck, or dribbling with a ball carry a higher risk of failure and require excep-
tional skill to pull off, but also bring a higher potential reward. This paper 
describes computational tools for risk analytics to model the risk inherent in the 
choices faced by teams and athletes. We leverage distributional reinforcement 
learning (RL) as a source of concepts and techniques for computational risk ana-
lytics. Distributional RL techniques allow us to model a dynamic distribution of 
outcomes for 1000+ games in the National Hockey League. We find strong evi-
dence that strong teams take many risks (0.90 correlation between team season 
standing and team season standard/Gini deviation). For players, we also find 
strong evidence that stronger players take more risks (e.g., 0.86 correlation 
between a player’s season goals and their value-at-risk metric).
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11.1	� Introduction: Taking Chances in Sports

Many decisions by athletes and coaches involve accepting higher risk for potentially 
higher rewards. A well-known example from basketball is whether to take a long-
distance shot, which potentially nets three points, versus a shot from a shorter dis-
tance for two points. A more complex example from ice hockey is pulling the 
goalie—substituting an attacker for the goalie—when a team is trailing. Pulling the 
goalie earlier increases the chances of equalizing, but also increases the chances of 
the leading team scoring, which in practice decides the game immediately. While 
the decision-theoretically optimal choice is to maximize the average success, that is 
the average number of points and wins, several sports analysts have observed that 
players and coaches are often influenced by a secondary goal, which is to minimize 
the probability of failure, or generally the probability of bad outcomes. To illustrate 
the point in the basketball scenario, consider a player in a situation where the chance 
of scoring a three-pointer is 20% and the chance of scoring a two-pointer is 30%. 
Then the expected number of points is the same for each choice (namely 0.6). 
However, the probability of failure is 80% for the three-pointer and only 70% for the 
two-pointer; bad outcomes are less likely for the two-point shot. Now consider a 
different situation where the long-distance shot has a 25% chance of success. In this 
case, the expected number of long-distance points is 0.75 versus 0.6, and the opti-
mal decision is to take the long-distance shot. However, the chance of failure is still 
75% versus only 70% for the two-pointer, so a risk-averse player may still prefer the 
safer two-point shot.

Several sports analysts have argued that players and teams tend to take risk-
averse decisions at the expense of their total success averaged over many games and 
match situations. Pelechrinis (2016) provides evidence that American football 
coaches aim to minimize the variance of expected points, rather than the expected 
points directly, perhaps to avoid public criticism for failure. Beaudoin and Swartz 
(2010) argued that trailing hockey teams should pull their goalies earlier to maxi-
mize winning chances. Indeed NHL teams have recently started pulling their goal-
ies earlier.1 Another piece of evidence for a trend towards more risk-taking is the 
rise of 3-point attempts in basketball, rising from 22.2% in the 2010–2011 season to 
39.2% in 2020–2021.2 The trend towards riskier actions over time is evidence that 
risk-taking affords an advantage over more cautious tactics.

In this paper, we study risk-taking in the National Hockey League. We examine 
different ways to quantify how risky a decision is, including traditional notions such 
as the variance/standard deviation of outcomes, as well as the Gini deviation, an 
alternative variability concept well-suited to multi-modal distributions (Luo et al., 
2023). From a technical viewpoint, modeling risk requires modeling higher-order 
moments of the distribution of possible action outcomes. To model the outcome 
distribution beyond its mean, we leverage recent work in distributional reinforce-
ment learning (RL). Reinforcement learning is a branch of machine learning that 

1 https://www.nhl.com/news/coaches-room-paul-maclean-nhl-pulling-goalies-trend-301099580
2 https://www.nba.com/news/3-point-era-nba-75
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studies how to act in sequential decision-making scenarios, such as we encounter in 
sports analytics. Reinforcement learning has developed an extensive set of methods 
for estimating expected outcomes from actions, known as prediction or policy eval-
uation methods (Sutton & Barto, 1998). Distributional reinforcement learning is a 
more recent development that provides methods for modelling the distribution of 
action outcomes. A recent paper by Liu et al. (2022) developed a distributional RL 
method for estimating the distribution of action outcomes for play-by-play (event) 
data. We utilize the computational tools from their work to estimate action outcome 
distributions from large play-by-play event data (1000+ games, 1M+ events).

We apply their framework to quantify and study the riskiness of actions by pro-
fessional players in the NHL.  The main question is how performance relates to 
risk-taking, for both teams and players. We examine three different variability con-
cepts for quantifying the risk associated with a distribution of outcomes: standard 
deviation, Gini deviation, and value at risk. The risk impact of an action is the extent 
to which it increases/decreases the variability of the game outcomes for the acting 
player’s team.

Our main findings are as follows: For team performance, the total risk of the 
actions taken by a team in a season displays a very high correlation with the team 
performance, measured by the number of total season points. Using standard devia-
tion or Gini deviation as our risk measure, the correlation reaches 0.90. For the 
value-at-risk metric studied previously by Liu et al. (2022) the correlation is only 
0.51, given a confidence level 0.2 that represents risk-seeking (see Sect. 11.6 for 
further details).

For player performance, we use the total risk of the actions taken by a player in 
a season as a measure of the player’s risk-taking. All player risk metrics show a high 
degree of temporal consistency, with their round-by-round totals essentially con-
verging less than halfway through the season. The Gini deviation and standard devi-
ation player metrics achieve substantial correlations of 0.56 and 0.51, respectively, 
with the player’s total goals in a season. The value-at-risk metric achieves an even 
higher goal correlation of 0.86 (with the risk-seeking confidence level of 0.2). These 
results provide evidence that variability risk metrics are very good at predicting 
team success, but less suitable for predicting player success. However, because of 
the lack of a ground truth ranking for players, we do not consider this finding con-
clusive, and investigating risk-taking by players is a valuable direction for future 
research. While our study focuses on ice hockey data from the National Hockey 
League (NHL), our methods apply to any play-by-play dataset; see Liu et al. (2022) 
for an application to soccer data.

Paper Outline  Our paper is organized as follows. We begin with an overview of 
the rules of ice hockey and our play-by-play dataset. Then we review the back-
ground of reinforcement learning (RL), especially the distributional RL techniques 
for learning the distribution of action outcomes from play-by-play event data. Our 
discussion focuses on the main principles and intuitions; details on our learning 
methods may be found in the appendix and in the references. Given a dynamic dis-
tribution over future action outcomes at each point in a match, we define the risk 
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Fig. 11.1  System components in our risk analytics framework

impact of an action as the increase/decrease in the risk associated with the outcome 
distribution, after the action. The total risk impact of all actions is used to quantify 
risk-taking by teams and by players. Figure 11.1 summarizes our system components.

11.2	� Hockey Rules and Hockey Data

NHL Rules  We give a brief overview of rules of play in the NHL (National Hockey 
League, 2014). NHL games consist of three periods, each 20 min in duration. A 
team has to score more goals than their opponent within three periods in order to 
win the game. Teams have five skaters and one goalie on the ice during even strength 
situations. Penalties result in a player sitting in the penalty box for 2, 4, 5 or 10 min 
and the penalized team will be shorthanded, creating a manpower differential 
between the two teams. The period where one team is penalized is called a power-
play for the opposing team with a manpower advantage. A shorthanded goal is a 
goal scored by the penalized team, and a powerplay goal is a goal scored by the 
team on the powerplay.

Dataset  In this paper, we use a play-by-play proprietary dataset constructed by 
Sportlogiq.3 The data are constructed through a combination of computer vision and 
manual annotation. The dataset contains a total of 1196 games played between 
October 3rd, 2018 and April 6th, 2019. The training dataset for constructing our 
model contains 956 games (from October 3rd, 2018 to February 24th, 2019). 
Table 11.1 lists the features used in our analysis (Liu et al., 2022) and Fig. 11.2 
illustrates the adjusted coordinates in the Sportlogiq dataset. Figure 11.2 shows a 
schematic layout of the ice hockey rink. The units are feet. Adjusted Y-coordinates 
run from −42.5 at the bottom to 42.5. The goal line is at X = 89.

The dataset records event data known as play-by-play data. Play-by-play data spec-
ifies the timing and location of actions, identifies the player responsible for each 
action, and includes the contextual event features outlined in Table 11.1. Table 11.2 
lists the most frequent action types in our dataset. To help visualize play-by-play 
data, Table 11.3 provides a partial sample.

3 https://sportlogiq.com

S. Xu et al.
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Table 11.1  The complete list of game features for the ice hockey dataset

Type Name Range
Spatial features X Coordinate of Puck

Y Coordinate of Puck
Velocity of Puck
Angle between the puck and 
the goal

[−100, 100]
[−42.5, 42.5]
(−∞, +∞)
[−3.14, 3.14]

Ice 
Hockey

Temporal 
features

Game Time Left
Event/Action Duration

[0, 3600]
(0, +∞)

In-Game 
features

Score Differential
Manpower Situation
Home or Away Team Action 
Outcome

(−∞, +∞)
{Even Strength, Short-Handed, 
Power Play}
{Home, Away}
{successful, failure}

The table utilizes adjusted spatial coordinates where negative numbers denote the defensive zone 
of the acting player and positive numbers denote the offensive zone

Fig. 11.2  Rink layout with adjusted coordinates. Coordinates are adjusted so that for the team 
performing an action, its offensive zone is on the right

11.3	� Markov Game Models for Sports

Reinforcement learning provides a rich toolkit for estimating the chances of future 
success for strategic agents. Schulte (2022) gives a short accessible introduction to 
applying RL in sports analytics. For single-agent problems, RL is based on the fun-
damental Markov decision process model. Generalizing Markov decision process to 
multiple decision makers leads to the Markov game model. Markov game models 
have been developed for several sports, such as ice hockey, soccer, and American 
football (Chan et al., 2021; Liu et al., 2020; Liu & Schulte, 2018). We utilize the ice 
hockey model of Liu and Schulte (2018).

11  Risk, Reward, and Reinforcement Learning in Ice Hockey Analytics
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Table 11.3  Sample excerpt of play-by-play data

Game ID Player ID Period Team ID x Coord y Coord Manpower Action type
849 402 1 15 −9.5 1.5 Even lpr
849 402 1 15 −24.5 −17 Even Carry
849 417 1 16 −75.5 −21.5 Even Check
849 402 1 15 −79 −19.5 Even Puckprot
849 413 1 16 −92 −32.5 Even lpr
849 413 1 16 −92 −32.5 Even Pass
849 389 1 15 −70 42 Even Block
849 389 1 15 −70 42 Even lpr
849 389 1 15 −70 42 Even Pass
849 425 1 16 −91 34 Even Block
849 395 1 15 −97 23.5 Even Reception

Table 11.2  Definition of the most frequent action types in the dataset

Action Description
Block A block attempt on the puck’s trajectory
Carry Controlled carry over a blue line or the red center line
Check When a player attempts to use his body to remove possession from an 

opponent
Dump in When a player sends the puck into the offensive zone
Dump out When a defending player dumps the puck up the boards without targeting a 

teammate for a pass
lpr Loose puck recovery. The player recovered the puck as it was out of possession 

of any player
Offside When a player is caught over the offensive blue line before their teammate 

brings the puck in
Pass The player attempts a pass to a teammate
Puck 
protection

When a player uses their body to protect the puck along the boards

Reception When a player receives a pass from a teammate
Shot A player shoots on goal
Shot against A shot was taken by the opposing team

11.3.1	� Markov Game Model for NHL Ice Hockey

Similar to Liu and Schulte (2018), we apply the Markov Game Framework to model 
the play dynamics for sports games. A Markov Game (Littman, 1994), sometimes 
called a stochastic game, is defined by a set of states  , and a collection of action 
sets  , one for each agent in the environment. State transitions are controlled by 
the current state and a list of actions, one action from each agent. For each agent, 
there is an associated reward function mapping a state transition to a reward. An 
overview of how a hockey Markov Game model fills in this schema is as follows.

•	 There are two agents, Home and Away, representing their respective teams.
•	 The action at denotes the movements of players who control the puck. Our model 

applies a discrete action vector using a one-hot representation.

S. Xu et al.
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Fig. 11.3  A hockey match is segmented into goal-scoring episodes

•	 An observation is a feature vector xt specifying a value of the features listed  
in Table  11.1 at a discrete time step t. We use the complete sequence 
st ≡ (xt, at, xt − 1, …, x0) to represent the state (Mnih et al., 2015) (Fig. 11.3).

•	 Since we have two agents, we have two reward functions, one for the home 
team and one for the away team. Conceptually, the reward at time t is 1 for a team 
that scores a goal at time t, 0 if there is no goal; we write goalt, Home, goalt, Away. For 
example, goalt, Home = 1 indicates that the home team scores at time t. It is techni-
cally useful to introduce a virtual “none” agent for the eventuality that neither 
team scores until the end of a game. If neither team scores at the end of the 
match, we write goalT, Neither = 1 where T is the last time step.

The expected goal model Rk(st, at) = P(goalt, k = 1| st, at) specifies the probability that 
a team scores a goal after an action in a given match state. This model makes the 
Markov assumption, which implies that the state information available at time t is 
informative enough that scoring chances can be estimated based on the current state 
only, independent of the current time t and previous states. Technically, the Markov 
game model is stationary and the goal scoring probability is independent of the cur-
rent time index t. Similarly, transition probabilities P(st + 1, at + 1| st, at) are assumed to 
be stationary and depend on the current match state only. This means that for a given 
match state st and action at at time t, the dynamics of NHL play define a distribution 
over future game trajectories that depends only on the current state and action.

11.3.2	� The Expected Value Function

We divide a sports game into goal-scoring episodes, so that each episode: (1) starts 
at the beginning of the game, or immediately after a goal, and (2) terminates with a 
goal or at the end of the game (sH). Episodes extend through period breaks.

A key quantity in reinforcement learning is the expected reward with respect to 
future trajectories. Given our binary reward (score goal or not), the expected reward 
for a team k is the chance of scoring the next goal, denoted as Qk(st, at). To explain 
the basic RL approach to learning a Q-function, consider first the expected reward 
for a bounded horizon, that is, a fixed look-ahead length H . The chance of scoring 
within the next H steps is then defined by the expression:

	
Q s a P s ak

H
t t h

H h
t h k t t, goal |, |,� � � �� �� �� 0

1� , 	 (11.1)
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Following previous studies (Liu & Schulte, 2018; Liu et al., 2020), we set γ = 1 . In 
this case the Qk

H  value simply denotes the probability that team k scores a goal 
within H steps.

The Q-value satisfies an important recurrence relation known as the dynamic 
programming update:

	
Q s a R s a Ek

H
t t k t t s a P s a s s a at t t

�
� � �� �� � � � � �

� �

1

1 1 0 0
, , ,|, ,|, ,|,� , tt

Q s ak
H

t t� � � �� ��� ��1 1, 	 (11.2)

The principle behind dynamic programming is that a team scores a goal in H + 1 
steps if and only if they (1) score immediately or (2) take another step and then 
score within H steps. The value iteration algorithm uses dynamic programming to 
estimate Q-values from a dataset   of observed trajectories as follows.

	1.	 Initialize the Q-values for H = 0 with the expected goal model R.
	2.	 Iteratively apply Eq. (11.2) through H = 1, H = 2, …, until convergence where 

Q s a Q s ak
H

t t k
H

t t
� � � � � �1 , ,  for each team and state-action pair. We denote the con-

vergent Q-value as Qk(st, at).

For continuous state spaces, such as we have in ice hockey, the expectation 

Es a P s a s s a at t t t� � � � �� �� �1 1 0 0, ,|, ,|, ,|,  can be estimated by averaging over all transitions 

(st, at; st + 1, at + 1) observed in the data set. In the NHL model of Schulte et al. (2017b), 
convergence occurred with a lookahead of H = 13. The fact that expected values in 
RL incorporate lookahead means that they can capture the medium-term effects of 
actions on goals scoring.

With an unbounded lookahead H → ∞, under mild conditions value iteration 
converges to a fixed point that satisfies:

	
Q s a R s a E Qk t t k t t s a P s a s a kt t t t t t

, , ,|, ,|, ,|,� � � � � �
� � � �� � ��
1 1 1 1, ss at t� �� ��� ��1 1, 	 (11.3)

which is known as the Bellman equation for policy evaluation. In the Appendix we 
discuss how the Bellman equation can be applied to learn a neural net model of the 
Q-function.

Remark  For readers familiar with reinforcement learning models, we briefly situ-
ate our NHL model with respect to other RL models. Other readers can skip this 
paragraph without loss of continuity. Our learning setting is off-line learning where 
we learn a value function from a dataset without executing actions; that is, our prob-
lem is prediction not control. In the off-line perspective, the observed actions can be 
treated as another feature similar to states. Formally, what we have defined is a 
Markov reward process in an expanded state space S A×  where an expanded state 
is a pair (s, a) (cf. Sutton & Barto, 1998, Ch.6.4). The Q-function as we have defined 
it is the value function of this Markov reward process. We have used the Q-notation, 
rather than V for value function, because its meaning is the same as in policy evalu-
ation: the expected cumulative reward for an agent given a current action and a cur-
rent state. An equivalent model would be to first estimate a policy πHome for the home 
team and another policy πAway for the away team. For example, if in state s the home 

S. Xu et al.
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team passes the puck 30% of the time, we might estimate πHome(pass| s) = 30%. The 

Q-function as we have defined it represents Q Home Awayπ π, , which is the Q-function of 
the NHL Markov game where the home and the away team follow the behavioral 
policies with action frequencies shown in the data. While the Markov reward model 
for off-line data is perhaps less familiar than the policy evaluation formulation, we 
use it because it is conceptually simpler and in fact fits naturally the position of the 
sports analyst who is passively watching the matches: decisions by the players are 
events for the sports analyst to analyze, not choices to control. For more discussion 
of reducing off-line Markov game analysis to other RL models please see (Luo 
et al., 2020).

11.3.3	� Learning Reward Distributions

Distributional RL learns the distribution of the random variable Zk(st, at) that returns 
the sum of (discounted) rewards for future episode trajectories starting with state st 
and at (Bellemare et al., 2017). Therefore the Q-value is the expectation of the Z 
variable: Qk(st, at) = E(Zk(st, at)). Similar to the Q-value, the distribution of the total 
rewards Z follows the distributional Bellman equation:

	
Z s a R s a E Zk t t k t t s a P s a s at t t t t t

, , ,|, ,|, ,|,� � � � �
� � � �� � �: , �
1 1 1 1 kk t ts a� �� ��� ��1 1, 	 (11.4)

where X Y: �
�

 indicates that random variables X and Y follow the same distribution. 
Given a computationally tractable representation of the Zk distributions, we can 
iteratively apply the Bellman update Eq. (11.4) to update the distribution for differ-
ent look-ahead lengths H = 1, H = 2, …, until we arrive at a convergent distri-
bution Zk.

Computational Representation  To make the distributional Bellman equation 
operational, the question is how to choose a computationally tractable representa-
tion that supports learning. One option is to choose a parametric family, such as a 
Gaussian distribution. The issue with such parametric families is that they are typi-
cally unimodal. Unimodal distributions are not appropriate for the complex dynam-
ics of sports, where events typically have a high branching factor, with different 
branches corresponding to different modes. For example, if a player attempts a pass, 
three different possible outcomes are that the pass is (1) intercepted, (2) reaches the 
intended recipient, or (3) turns into a loose puck. Each of these outcomes has alter-
native subsequent events, etc. Different possible event sequences determine differ-
ent scoring probabilities, leading to a highly multi-modal distribution.

Bellemare et al. (2017) proposed modelling reward distributions using quantile 
regression; Liu et  al. (2022) applied quantile regression to ice hockey and soc-
cer data.

11  Risk, Reward, and Reinforcement Learning in Ice Hockey Analytics
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The quantile-regression (QR)-DQN method represents the conditional distribu-

tion of Z by a uniform mixture of N supporting quantiles as Z s a
Nk t t i

N

s ak i t t

 , ,� � �
� � ��1
1
�� ,

, where θk, i estimates the quantile at the quantile level (or quantile index) τi = i/N for 
1 ≤ i ≤ N and ��k i,

 denotes a Dirac distribution at θk, i. For example, suppose we take 
N = 4 and estimate quantiles at 25%, 50%, 75%, 100% as 0.1, 0.4, 0.7, 0.9. Then the 

cumulative density function (cdf) of Z s ak t t
 ,� �  has 25% of values at 0.1 or less, 

50% (the median) of values at 0.4 or less, 75% of values at 0.7 or less, and 100% of 
values at 0.9 or less (so none above 0.9). Within each pair of quantiles, the cdf is 
approximated as uniform over the quantiles (e.g., the cdf has value 0.1 between 0 
and 25%).4

Given a fixed number N of target quantiles (N = 4 in our example), we can train 
a neural network to take as input a state-action pair (s, a), and output 4 numbers cor-
responding to the quantiles. By increasing the number N, this procedure provides a 
non-parametric approximation to the cumulative density function of Ẑ  and there-
fore to the distribution of Ẑ . For further details please see (Liu et al., 2022).

Choice of Outcome Variable: Expected Goals Vs. Actual Goals  We obtained 
good empirical results with actual goals as rewards. As a further refinement, we fol-
low (Decroos et al., 2017) and decompose goal scoring probabilities into the prob-
ability of managing a shot and the probability that a goal leads to a shot:

	
P s P s P st k t t k t tgoal | goal | shot shot|st, , , ,

0 0
� � � � �� � � 	

which can be read as saying that probability of scoring a goal from an initial state 
st0  is the probability of managing a shot times the probability of the shot leading to 
a goal. This equation is true in hockey because the only way to score a goal is to first 
take a shot. In our application of distributional RL, we take the goal scoring proba-
bilities P(goalt, k| st, shot) as the outcomes (virtual rewards) whose distribution is to 
be modelled.

The motivation for using the shot-goal decomposition is as follows:

	1.	 A team can largely control whether they achieve a shot, whereas the success of 
the shot depends on factors such as the skill of the opposing goalie that are less 
under the control. So a model of team/player strength should reward teams for 
managing shots.

	2.	 Shots are sparse but not as sparse as goal.
	3.	 With actual goals as rewards, our outcome variable Zk is binary and the outcome 

distribution is basically a Bernoulli distribution. With expected goals as rewards, 
the outcome variable Zk ranges over the interval [0,1], and the outcome distribu-
tion is an informative distribution over goal scoring probabilities.

4 We have slightly simplified notation compared to Bellemare et  al. (2017) where a quantile is 
associated with the midpoint of a bins, rather than the higher endpoint if the bin.

S. Xu et al.
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So far, we have described how to build a machine learning model that estimates the 
distribution of possession outcomes for a given team, given a specific time and con-
text in a match. We now show how to apply the model to gain analytical insights for 
a sport. Specifically, we discuss how to evaluate risk-taking by teams, the riskiness 
of actions, and ranking players by how risky their actions are.

11.4	� Risk Measures for an Outcome Distribution

Luo et al. (2023) consider in depth the properties of different measures of risk for a 
distribution of outcomes. In this study we employ three of these measures: standard 
deviation, Gini deviation, and Value-at-Risk (VaR). Variance, the square of standard 
deviation, and VaR are commonly used risk measures in portfolio analysis. Gini 
deviation is recommended by Luo et al. (2023) for multi-modal distributions. The 
formal definitions are as follows.

Definition 1 (Risk Measures)  For a random variable Z , let Z1 and Z2 be two i.i.d. 
copies of Z , that is, Z1 and Z2 are independent and follow the same distribution as Z.

•	 The variance is defined as V EZ Z Z� � � �� ��
�

�
�

1

2 1 2

2

•	 The standard deviation is the square root of the variance STD Z Z� � � � �

•	 The Gini deviation is defined as D EZ Z Z� � � ��� ��
1

2 1 2 .

Thus the Gini deviation replaces the L2 norm of variance by the L1 norm. The 
definition value-at-risk (VaR) depends on the choice of a confidence level c ∈ (0, 1]. 
The VaR for level c is defined as the (1 − c)th quantile in the distribution. Thus in the 
hypothetical example from above, the value at risk for c  =  25% is 0.7, and for 
c = 50% it is 0.4. Intuitively, VaR provides a kind of worst-case analysis with respect 
to a user-controlled risk-level. For example, choosing c = 0.8 corresponds to risk-
aversion since it focuses on bad outcomes. In contrast, choosing c = 0.2 corresponds 
to risk-seeking with better sensitivity to positive outcomes. Figure 11.4 illustrates 
how different risk concepts apply to different outcome distributions.

Computing Risk Measures from Quantile Regression  VaR is defined in terms of 
quantiles and thus can be naturally computed from a quantile regression model. 
Given a quantile representation, we can estimate the variance and Gini deviation as 
follows (Luo et al., 2023).
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Fig. 11.4  The predicted distribution of future goals in an ice hockey game between Blues and 
Coyotes, 2018–2019 NHL season. The shots are made in the positions (a) and (b). Next-goal scor-
ing distributions (a) and (b) have the same expectation (around 0.6), but the first shot has a much 
lower variance and Gini deviation of outcomes. Shot (a) also displays a larger risk-averse estimate 
(at the confidence 0.8, we find a larger next-goal chance with 0.58 > 0.37) and a smaller risk-
seeking estimate (at the confidence 0.2, we find a smaller next-goal chance of 0.68 < 0.77)
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Figure 11.5 illustrates the Q-values and standard deviations that the trained model 
assigns during a game between the Flyers and Maple Leafs.

11.5	� Measuring the Riskiness of an Action

Using the techniques described in the previous section, we can compute from an 
estimated outcome distribution Ẑ s ak t t,� �  a risk measure ρk(st, at), where ρ is one of 

the risk measures described above (standard/Gini deviation, VaR(c)). A simple 
approach would be to measure the riskiness of an action in a match state simply by 
the risk measure ρk(st, at). The problem with this approach is that it measures the 
general match context of the action, rather than the specific impact of the action. For 
example if a player makes a pass when his team has an empty net, the risk measure 
will be high regardless of how risky his pass is. Intuitively, the pass is taking place 
in a risky place at a risky time, but may itself not contribute to a team’s risk.

The same issue arises with respect to expected action values (i.e., Q-values): A 
team playing against an empty net has a high chance of scoring the next goal, but a 
particular action by a player may not be increasing his team’s scoring chances 
beyond playing an empty net. Routley (2015) proposed to address this issue by 
computing the action impact, which is measured by how much an action changes 
the scoring chances of the team in possession. The action goal impact is defined as 
follows for an action at + 1 and state st + 1 comprising the t + 1-th event:
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Fig. 11.5  Illustrating the dynamic distribution of next-goal scoring chances by showing the cor-
responding mean ± standard deviation of the action values at each time step in a match between 
the Flyers (Home team) and the Maple Leafs (Away team) on March 15, 2019

	
impact s a Q s a Q s ak t t k t t k t t p s at t� � � � �� � � � � � � ��� �� � �1 1 1 1 1 1

, , , , ��� 	 (11.7)

Here p is a density estimator for state-action pairs, and  p ·� ��  is an indicator value 

that returns 0 if the probability of the event falls below a threshold ϵ. The idea is to 
filter out rare events because the Q-value estimates for rare events are often biased 
due to small sample sizes. Using a discrete Markov game model, Routley (2015) 
removed all state-action pairs from consideration that occur less than 10 times in the 
data. For our continuous state space, we follow Liu et  al. (2022) and eliminate 
anomalous events with p < 20%. Anomaly filtering is not an essential component of 
our risk analysis framework.

We can adapt the goal impact approach by measuring how much an action 
changes the risk of an action, which we call the risk impact:

	
Rimpact s a s a s ak t t k t t k t t p s at t� � � �� � � � � � � ��� �� � �1 1 1 1 1 1

, , , ,� �  �� �� 	 (11.8)

where ρ is one of our risk measures (standard/Gini deviation, value at risk).
Figures 11.6 and 11.7 show the box plots for the standard/Gini deviation impacts 

for different actions. Game-changing events such as shots tend to have a high impact 
on the variability of team outcomes. Defensive faceoffs tend to decrease a team’s 
risk, likely because they follow a successful defense. It is interesting to note that 
exerting pressure tends to increase a team’s risk. Box plots for value-at-risk are in 
the appendix.
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Fig. 11.6  Box Plot for the risk impact of an action on the standard deviation of next-goal scoring 
chances. The red line indicates the median value and the blue line indicates the mean value. Each 
point represents the impact of the given action in a state (outliers removed)

Fig. 11.7  Box Plot for the risk impact of an action on the Gini deviation of next-goal scoring 
chances. The red line indicates the median value and the blue line indicates the mean value. Each 
point represents the impact of the given action in a state (outliers removed)

11.6	� Team Performance and Team Risk-Tasking

We apply our outcome distribution model to teams, by evaluating how much risk a 
team takes on aggregate. We start with teams because we can use the total team 
performance over a season as a ground-truth metric of team success. The main 
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question in this section is whether risk-taking by a team correlates with team 
success. To quantify risk-taking by teams, we add up the risk impact of the team’s 
total actions.

For a dataset  , let g, t be a generic instance for event number t in game number 
g. Also let teamgt be the team in possession at event t in game g, and similarly for the 
state sgt and the action agt. Then the total team risk impact for team T in the dataset 
is given by

	
RIM Rimpact s ak g t team T k gt gt

gt t
� � ��� , :

, 	 (11.9)

where kt denotes the appropriate agent at time t (Home or Away). Equation (11.9) 
shows how to define a team risk impact metric for each risk measure, which we 
abbreviate as follows: StdRIM = risk impact for standard deviation, GdRIM = risk 
impact for Gini deviation, RIM(0.2) = risk impact for VaR with risk-seeking confi-
dence level 0.2, RIM(0.8) = risk impact for VaR with risk-averse confidence level 
0.8. RIM(c) is denoted as RiGIM(c) by Liu et al. (2022) using the same notation.

A team’s season league standing is determined by the number of points the team 
earns in each match. We therefore measure the correlation between a team’s season 
risk impact and season total points as a measure of team performance. As Figs. 11.8 
and 11.9 show, both the standard and Gini deviations provide measures of risk-
taking that are excellent predictors of team performance. This shows that stronger 
teams take more risks. Table 11.4 provides the Pearson correlations between team 
total points and team risk metrics. Value-at-risk metrics are substantially less infor-
mative about team performance, especially at the high confidence level of 0.8. 
Table 11.5 shows the top 10 teams in the league and their risk metrics.

Fig. 11.8  Team points vs. Team StdRIM
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Fig. 11.9  Team points vs. Team GdRIM

Table 11.4  Correlations between a team’s risk-impact metric and their season totals

StdRIM GdRIM RIM(0.2) RIM(0.8)
0.90 0.90 0.51 −0.24

The standard/Gini deviations show a very high predictive ability for team season performance, 
which shows that stronger teams take more risks

Table 11.5  Top 10 teams with StdRIM and GdRIM based on the entire season

Team name Predicted rank Real rank Total points StdRIM GdRIM
Lightning 1 1 128 64.43 36.42
Blues 2 12 99 57.01 31.98
Sharks 3 6 101 54.56 31.25
Flames 4 2 107 53.43 29.53
Bruins 5 3 107 51.76 29.41
Golden Knights 6 16 93 48.66 27.39
Maple Leafs 7 7 100 44.67 25.52
Hurricanes 8 11 99 44.17 24.98
Canadiens 9 14 96 44.09 24.45
Jets 10 10 99 40.47 23.62

The real rank is based on Total Points. The predicted rank is based on the risk impact metrics (both 
agree on the ranking), which measures a team’s total risk taking over the season

11.7	� Ranking Hockey Players by Risk-Taking

As with teams, we use the total risk impact of a player’s actions to evaluate their 
risk-taking. Let plgt be the player in possession at event t in game g . Then the total 
player risk impact for player l in the dataset is given by

	
RIM Rimpact s al g t pl l k gt gt

gt t
� � ��� , :

, 	 (11.10)
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where we use the same notation as in Sect. 11.6. Tables 11.6 and 11.7 show the top 
20 players according to their risk ranking. Applying the “eye test”, risk-seeking 
VaR(0.2) identifies many stars, such as Connor McDavid, Leon Draisaitl, Sidney 
Crosby. The standard deviation metric also identifies several stars, such as Alex 
Ovechkin and Johnny Gaudreau. But it also highlights several less-heralded players, 

Table 11.6  Top 20 players according to the risk metric value-at-risk with a risk-seeking confi-
dence level 0.2 (i.e., RIM(0.2)) based on the entire season

Player name Position Team P A G RIM(0.2)
Nikita Kucherov RW TBL 128 87 41 61.12
Mitchell Marner RW TOR 94 68 26 60.81
Johnny Gaudreau LW CGY 99 63 36 59.71
Patrick Kane RW CHI 110 66 44 56.55
Brad Marchand LW BOS 100 64 36 53.34
Mark Stone RW VGK 73 40 33 51.29
Connor McDavid C EDM 116 75 41 51.00
Leon Draisaitl C EDM 105 55 50 50.16
Timo Meier RW SJS 66 36 30 49.67
Blake Wheeler RW WPG 91 71 20 48.96
Sidney Crosby C PIT 100 65 35 48.56
Jonathan Huberdeau LW FLA 92 62 30 48.19
Kyle Connor LW WPG 66 32 34 47.85
Artemi Panarin LW CBJ 87 59 28 47.34
Evgenii Dadonov RW FLA 70 42 28 45.83
Cam Atkinson RW CBJ 69 28 41 45.70
Matthew Tkachuk LW CGY 77 43 34 45.32
Brendan Gallagher RW MTL 52 19 33 44.95
Jake Guentzel LW PIT 76 36 40 44.58
Brandon Saad LW CHI 47 24 23 43.69

Table 11.7  Top 20 players with StdRIM based on the entire season

Player name Position Team P A G StdRIM
Johnny Gaudreau LW CGY 99 63 36 13.07
Patrick Kane RW CHI 110 66 44 12.04
Nikita Kucherov RW TBL 128 87 41 11.68
Alex Ovechkin LW WSH 89 38 51 11.30
Mitchell Marner RW TOR 94 68 26 11.14
Cam Atkinson RW CBJ 69 28 41 11.05
Timo Meier RW SJS 66 36 30 10.77
Vladimir Tarasenko RW STL 68 35 33 9.31
Matthew Tkachuk LW CGY 77 43 34 9.30
Brad Marchand LW BOS 100 64 36 9.12
Jaden Schwartz LW STL 36 25 11 9.10
Brendan Gallagher RW MTL 52 19 33 9.04
David Pastrnak RW BOS 81 43 38 9.01
Kyle Connor LW WPG 66 32 34 8.95
Filip Forsberg LW NSH 50 22 28 8.72
Josh Anderson RW CBJ 47 20 27 8.30
Mikko Rantanen RW COL 87 56 31 8.28
Evgenii Dadonov RW FLA 70 42 28 7.91
Jason Zucker LW MIN 42 21 21 7.85
Jonathan Huberdeau LW FLA 92 62 30 7.73
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such as Jason Zucker and Jaden Schwartz. Another difference is that the standard 
deviation metric shows a bias towards forwards, whereas the Var(0.2) risk impact 
metric includes some centres. The top 20 tables for the other risk metrics are in the 
appendix.

A difficulty in evaluating player rankings is that unlike with teams, there are few 
suitable ground-truth metrics for performance (Franks et al., 2016). We follow pre-
vious work (Liu & Schulte, 2018; Decroos et al., 2019) and consider the correla-
tions between our risk metrics and other meaningful player statistics such as goals, 
assists, and points (= goals + assists). Figure 11.10 plots round-by-round correla-
tions between these metrics and the deviation risk impact metrics. For each round in 
the season, for each player, we compute their total risk impact so far (e.g., standard 
deviation impact over all games up to round 30), and correlate it with their statistics 
(e.g., total goals scored up to round 30). We observe a substantive correlation for 
goal-based statistics, reaching 0.51 for StdRIM and 0.56 for GdRIM at season’s 
end. Note that the correlation is already relatively high after about 30 rounds, less 
than half-way through the season. This means that the risk-impact metrics have high 
predictive power for future player performance. The auto-correlation plot in the 
bottom right directly confirms the temporal consistency of the risk metrics. This 
plot correlates the value of the risk metric after n rounds with the final season value. 

Fig. 11.10  Round by round correlations between different player metrics and risk metrics. The 
figure plots correlations for the standard deviation and Gini deviation risk metrics (StdRIM 
and GdRIM)
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We see that already after 25 rounds, a player’s risk impact observed so far predicts 
their final risk impact with correlation above 0.8. The strong temporal auto-
correlation is evidence that risk-taking measures capture a stable player’s character-
istics (Pettigrew, 2015).

Figure 11.11 shows the correlations between value-at-risk metrics and goal-
related statistics. The correlations are even higher than with the deviation metrics 
(0.86 vs. 0.56 with goals). As the auto-correlation figure shows, a player’s risk-
taking as measured by value-at-risk is stable throughout a season. Our observations 
for team and player rankings therefore point in different directions: for teams, we 
have strong evidence that standard/Gini deviation measures risk-taking that indi-
cates team strength, whereas for players, value-at-risk with a low confidence level 
seems to correlate better. Correlations with goal-based statistics are only a superfi-
cial signal of player strength, as goals occur rarely and cover only a small part of 
relevant actions. Further research into risk-taking by players seems warranted.

A possible explanation for why the deviation-based metrics correlate less with 
goals, and do worse by the eye test, is to distinguish two ways in which a player’s 
actions can increase outcome variability: (1) Deliberate Risks, and (2) Unforced 

Fig. 11.11  Round by round correlations between different player metrics and risk metrics. The 
figure plots correlations for value-at-risk metrics (RIM(c)), and goal impact metric (based on 
expected value). We plot risk-seeking confidence values (0.2), risk-averse confidence (0.8), and a 
neutral value with the confidence level corresponding set at the mean of the outcome distribution 
(its Q-value)
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Errors. Strong players take controlled risks, based on confidence in their skills. For 
example, in ice hockey, a strong player will often carry the puck into their offensive 
zone, drawing defenders to themselves, which increases the risk of losing the puck 
but also increases the chance of a successful attack. In contrast, dumping the puck 
behind the defending team’s goal is a safer move, but tends to lead to fewer goals 
(Schulte et al., 2017a). An analogue in soccer would be dribbling the ball towards 
the defenders’ goal rather than passing it to a teammate. An example of an unforced 
error would be losing the ball during a promising attack, which causes the range of 
likely outcomes to spread from a concentration on a successful attack to both teams 
being likely to score. For a simple statistical model of this distinction, consider a 
Bernoulli model for a binary event with probability p. For example, an expected 
goals model might assign a probability p to a shot succeeding at time t. The variance 
of success is given by p(1 − p) and is maximal at p = 50%. A deliberate risk may 
increase the scoring chance from p  <  50% towards p′  >  p where p′  <  50%; for 
example, a deliberate risk may increase the scoring chance from 30% to 40%. Such 
a move increases both scoring chance and variance. On the other hand, an error 
may move the scoring chance from p towards p′ < p with p′ < 50%, for example 
from 70% to 60%. Such a move decreases the scoring chance and increases vari-
ance. It is possible that strong players’ risks tend to be mainly of the beneficial 
deliberate type, whereas weaker players’ risks are of the harmful error type, so both 
may display a high risk measure. This analysis suggests that a fruitful direction for 
future research is a player metric that combines risk and reward, e.g., the standard 
deviation and the mean of the outcome distribution associated with a player’s action.

11.8	� Conclusion

Decision-makers in sports often face a trade-off between risk and reward. Should a 
basketball player take a long-distance 3-point shot or a safer 2-point shot? Should a 
hockey player carry the puck, pass it to a teammate, or dump it behind the net? 
Studying the behavior of athletes and coaches when faced with risk-reward trade-
offs requires tools for risk analytics. This paper described computational tools for 
risk analytics in sports by leveraging concepts and techniques from distributional 
reinforcement learning. Distributional RL aims to model the distribution of possible 
future outcomes, whereas traditional RL estimates the expected value. For repre-
senting the complex multi-modal outcome distributions that stem from sports 
dynamics, we adapted a state-of-the-art approach to distributional RL, which uti-
lizes quantile regression as an expressive non-parametric framework for modelling 
distributions. We applied distribution RL techniques based on the Bellman equation 
to estimate a dynamic outcome distribution in the National Hockey League, for 
1000+ games and 1M+ events. The literature on risk analysis has proposed different 
ways to quantify the risk inherent in an outcome distribution. We evaluated several 
of the most prominent ones for applications in hockey analytics, to answer the ques-
tions: Do stronger teams take more risks? Do stronger players take more risks? We 
found that the traditional standard deviation risk metric is an excellent predictor of 
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team success: Both the standard deviation and Gini deviation of a team’s outcome 
distribution, aggregated over a season, show a 0.90 correlation with the team’s 
league standing at the end of a season (determined by their total points). Value-at-
risk with confidence level 0.2 shows a lesser but still strong correlation of 0.51.

For player ranking, we found that value-at-risk with risk-seeking confidence 
level 0.2, aggregated over all actions by a player in a season, shows a very high cor-
relation of 0.86 with the player’s total season goals. Standard deviation and Gini 
deviation, in contrast, show slightly lower but still strong correlations of 0.51 and 
0.56, respectively. We suggest that modelling the risk-taking behavior of players 
may require a more fine-grained metric that distinguishes between deliberate risks, 
which are incurred by actions requiring high skill, and risks stemming from errors 
(e.g., losing possession of the puck). A promising source of such fine-grained met-
rics are measures from portfolio theory that combine risk and reward (expected 
outcome). For example, we might investigate in sport analytics a version of the 
famous Sharpe ratio that divides expected value by standard deviation.

In sum, risk analytics is a promising new approach to sports analytics that focuses 
on the difficult trade-offs between taking risks and maximizing the chance of suc-
cess that decision-makers in sports face. Distributional reinforcement learning pro-
vides the computational tools for estimating both risks and expected rewards in 
large sports data sets. Our NHL study shows that strong teams take big risks, and 
confirms to a lesser degree, that strong players are risk-takers as well.
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�Appendix

�Learning Value Functions and Value Distributions

Figure 11.12 illustrates our recurrent neural network architecture for learning 
Q-values and distributional quantiles. Given a demonstration dataset of observed 
trajectories (i.e.,  � � �� ), a Q-function satisfying the Bellman equation can be 

learned by minimizing the 2-Norm of the Temporal difference (TD) error, which is 
defined by:

	
L D� �� � � � � � � � �� �� � � ˆ ˆ

,Q s a r Q s ak t t k t k t t1 1

2
, , 	 (11.11)

where the expectation represents the average over all transitions (st, at; st + 1, at + 1) 

observed in the dataset. The term Q s ak t t
 ,� �  represents the current value estimate, 
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Fig. 11.12  Our recurrent neural network architecture for learning Q-values and a distribution of 
action outcomes. At each time step, the RNN receives as input a pair st, at where the state st is a 
vector of features shown in Table 11.1. It outputs an estimate of the Q-value (chance of scoring the 
next goal) or a set of quantiles representing the distribution of action outcomes (goals scored). We 
utilize an LSTM architecture. For more details please see Liu et al. (2022)

and Q s a rk t t k t


� �� � �1 1, ,  a look-ahead step. Minimizing their squared difference 

drives the neural network to satisfy the Bellman equation (Eq.  11.3). For more 
details on implementing the temporal Bellman equation with quantile regression, 
please see Liu et al. (2022).

�Action Impact on Value-at-Risk

Figure 11.13 shows the action impacts for Var(0.2) with confidence level 0.2 Game-
changing events have a high impact on risk, as we observed in Sect. 11.5. In general 
the changes in risk are less than with standard/Gini deviations as this metric focuses 
on low probability outcomes.

Figure 11.14 shows the impact of actions on risk as measured by Var(0.8) with 
confidence level 0.8. At this confidence level, risk impact is similar to goal impact, 
that is, tends to measure increase in goal scoring chances rather than the increase in 
the variability of goal-scoring chances.
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Fig. 11.13  Box Plot with confidence 0.2 (risk-seeking) The red line indicates the median value 
and the blue line indicates the mean value. Each point represents the risk impact of the given action 
in a state

Fig. 11.14  Box Plot with for RIM with confidence 0.8 (risk-averse) The red line indicates the 
median value and the blue line indicates the mean value. Each point represents the risk impact of 
the given action in a state

�Top 20 Player Tables for Other Risk Metrics

Table 11.8 shows the top 20 players for the Gini impact risk metric, which is very 
similar to the top 20 for the standard deviation risk metric.

As shown in Table 11.9, for the risk-averse confidence level 0.8, value-at-risk 
identifies many stars, such as Scheifele and Crosby. This metric shows a bias 
towards centres.
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Table 11.8  Top 20 players with GdRIM based on the entire season

Player name Position Team P A G GdRIM
Johnny Gaudreau LW CGY 99 63 36 7.15
Patrick Kane RW CHI 110 66 44 6.61
Nikita Kucherov RW TBL 128 87 41 6.53
Cam Atkinson RW CBJ 69 28 41 6.06
Alex Ovechkin LW WSH 89 38 51 6.00
Mitchell Marner RW TOR 94 68 26 5.98
Timo Meier RW SJS 66 36 30 5.97
Matthew Tkachuk LW CGY 77 43 34 5.18
Brad Marchand LW BOS 100 64 36 5.06
Kyle Connor LW WPG 66 32 34 5.03
Vladimir Tarasenko RW STL 68 35 33 4.96
Brendan Gallagher RW MTL 52 19 33 4.91
David Pastrnak RW BOS 81 43 38 4.87
Jaden Schwartz LW STL 36 25 11 4.87
Filip Forsberg LW NSH 50 22 28 4.64
Mikko Rantanen RW COL 87 56 31 4.62
Josh Anderson RW CBJ 47 20 27 4.52
Evgenii Dadonov RW FLA 70 42 28 4.44
Jason Zucker LW MIN 42 21 21 4.27
Jonathan Huberdeau LW FLA 92 62 30 4.22

Table 11.9  Top 20 players with RIM at risk-averse confidence 0.8 based on the entire season

Player name Position Team P A G RIM(0.8)
Aleksander Barkov C FLA 96 61 35 50.50
Leon Draisaitl C EDM 105 55 50 49.67
Mark Scheifele C WPG 84 46 38 48.73
Sidney Crosby C PIT 100 65 35 47.24
Jonathan Toews C CHI 81 46 35 45.22
Mitchell Marner RW TOR 94 68 26 42.71
Dylan Larkin C DET 73 41 32 41.82
Nikita Kucherov RW TBL 128 87 41 41.00
Max Domi LW MTL 72 44 28 40.47
Connor McDavid C EDM 116 75 41 40.45
Bo Horvat C VAN 61 34 27 39.92
Mika Zibanejad C NYR 74 44 30 39.29
Artemi Panarin LW CBJ 87 59 28 38.93
Sebastian Aho C CAR 83 53 30 38.55
Mark Stone RW VGK 73 40 33 38.38
Claude Giroux C PHI 85 63 22 37.98
Johnny Gaudreau LW CGY 99 63 36 37.86
Mathew Barzal C NYI 62 44 18 37.83
Nicklas Backstrom C WSH 74 52 22 37.78
Brad Marchand LW BOS 100 64 36 37.55
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